Anisotropy of Single-Crystal Silicon in Nanometric Cutting

نویسندگان

  • Zhiguo Wang
  • Jiaxuan Chen
  • Guilian Wang
  • Qingshun Bai
  • Yingchun Liang
چکیده

The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures

Nanometric cutting of single crystal silicon on the different crystal orientations and at a wide range of temperatures (300 K-1500 K) was studied through molecular dynamics (MD) simulations using two sorts of interatomic potentials, an analytical bond order potential (ABOP) and a modified version of Tersoff potential, so as to explore the cutting chip characteristics and chip formation mechanis...

متن کامل

Study on nanometric cutting of germanium by molecular dynamics simulation

Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is alm...

متن کامل

Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting

Molecular dynamics simulation (MDS) was carried out using two types of interatomic potential function (a modified version of the Tersoff potential and an analytical bond order potential (ABOP)) to acquire an in-depth understanding of the material flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. T...

متن کامل

Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of B...

متن کامل

Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals

In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017